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Review Article

Introduction

Chinese caterpillar fungus Ophiocordyceps sinensis (Berk.) is a 
well-known entomopathogenic fungus with high medicinal val-
ues.1 In China, it is colloquially known as Dong Chong Xia Cao, 

derived from the Tibetan name དབྱར་རྩྭ་དགུན་འབུ (Yartsa Gunbu), mean-
ing “summer grass, winter worm”. The fungus is endemic to the 
Tibetan Plateau and its surroundings, including Tibet, Qinghai, Si-
chuan, and Yunnan provinces in China, as well as the Himalayas, 
such as Bhutan, India, and Nepal.2 O. sinensis is an aggregation 
of larvae and parasitic fungi associated with lepidopteran hosts. 
More than 400 species of Ophiocordyceps spp. exist worldwide, 
and approximately 90 species of Ophiocordyceps spp. have been 
recorded in China.3,4 The most commonly used and extensively in-
vestigated species are O. sinensis and Cordyceps militaris (orange 
caterpillar fungus),5,6 with O. sinensis being more commonly used 
as a medicinal product. O. sinensis has been used as a traditional 
medicine in China for over 700 years.7 As a renowned traditional 
Chinese medicine, it has long been known to boost the human 
immune system. O. sinensis enhances the immune response by 
increasing the production of interleukin (IL) and tumor necrosis 
factor, inducing macrophage phagocytosis, and stimulating the in-
flammatory response through the mitogen-activated protein kinase 
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lated from natural O. sinensis and cultivated artificially using fermentation technology. Currently, both natural and cultivated 
O. sinensis products are available as healthy Chinese herbal medicines on the market. However, there is a lack of comparative 
reviews on the two types of O. sinensis in terms of their compositions and medicinal functions. This mini-review will focus on 
the bioactive ingredients and medicinal functions of both natural and cultivated O. sinensis, intending to elucidate their medical 
values as traditional Chinese medicines for human use.
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pathway, playing a role in regulating the immune response and 
helping to resist bacterial infections.3 In addition, modern pharma-
cological research has revealed its therapeutic effects on various 
diseases and conditions, including respiratory, renal, liver, nervous 
system, and cardiovascular diseases.8 It has also shown potential 
as an anti-tumor, cholesterol-reducing, and antioxidant agent.9,10 
The pharmacological effects are attributed to the active ingredients 
in O. sinensis.11 The chemical components of O. sinensis include 
polysaccharides, nucleosides, amino acids, sterols, alkaloids, and 
other nutrients and bioactive ingredients.12 It has been reported 
that changes in growth conditions and environmental factors may 
alter the composition of these components, leading to differences 
in their pharmacological effects.

O. sinensis has a restricted geographical distribution, with a 
preference for high altitudes. The long-term interaction between 
the fungus and the larvae has resulted in the complex composi-
tion of O. sinensis.13 Furthermore, the precious pharmacological 
effects of wild O. sinensis have led to increasing market demand 
and over-exploitation, which has severely endangered its wild 
population and jeopardized its sustainability. Therefore, artifi-
cially cultivated O. sinensis has been gradually developed as an 
alternative.14 Various methods have been introduced to understand 
the biological characteristics of natural and cultivated O. sinensis 
through component comparisons, including mass spectrometry-
based metabolomics, transcriptomics, surface-enhanced Raman 
spectroscopy combined with machine learning algorithms, prot-
eomics, and others.15–17 These methods have facilitated extensive 
research on the similarities and differences in pharmacologically 
active ingredients and functions between natural and cultivated O. 
sinensis, promoting the market application of the latter in artificial 
cultivation.18

In conclusion, a deeper understanding of the differences in the 
content of active ingredients between cultivated and wild O. sinen-
sis is essential for clarifying its growth, development, and pharma-
cological activity. This review summarizes and explains in detail 
the differences in bioactive components and medicinal functions 
between natural and cultivated O. sinensis, aiming to facilitate the 
understanding of the alternative value of cultivated O. sinensis as a 
substitute for natural O. sinensis.

Research progress on natural and cultivated O. sinensis
The fungus O. sinensis has been regarded as a highly valuable tra-
ditional Chinese medicine for centuries, as documented in numer-
ous ancient texts. According to reports, this distinctive and pre-
cious fungus is predominantly found in alpine meadows situated at 
elevations ranging from 3,000 to 5,000 meters across the Qinghai-
Tibetan Plateau in southwest China, as well as in the Himalayas 
of Bhutan and Nepal.7 These regions experience extremely low 
temperatures and significant fluctuations between day and night, 
creating particularly challenging conditions.19 Additionally, O. 
sinensis fungus is a fascinating organism that grows parasitically 
on the larvae of specific ghost moth species, Thitarodes spp. This 
entomopathogenic fungus continues multiplying within the larvae 
until the entire worm is digested and filled with fungal hyphae.6 
When the nutrition in the infected larvae is exhausted, the worm 
dies during winter but remains intact and is known as a “winter 
worm”. In the following year, as the weather warms during late 
spring and early summer, the fruiting body of O. sinensis grows 
out from the head of the dead worm, resembling the appearance of 
summer grass.20 Figure 1 illustrates the distinct steps involved in 
the formation of the Chinese caterpillar fungus. O. sinensis com-
prises two parts: the fruiting body and the dead larva. The fruiting 
body is the part above the head of the insect that grows out of the 
body of the larva parasitized by the fungus, while the dead larva is 
the body of the insect larva that died after being parasitized. There 
are clear and visible rings on the surface of the larva’s body, as well 
as eight pairs of feet under the abdomen of the dead larva. Terrain, 
climate, soil, and other factors restrict the distribution and forma-
tion of O. sinensis, which is why its availability is limited. Its reli-
ance on specific moth species as hosts, as well as its long growth 
cycle and restricted geographical range, contribute to this scarcity.

The unique bioactive metabolites and components with medici-
nal values in natural O. sinensis have undoubtedly increased its 
demand in the commercial market, leading to its high price and 
overharvesting. Research has shown that techniques have been de-
veloped to cultivate and feiment O. sinensis mycelium products, 
such as the cultivation of asexual mycelium from O. sinensis har-
vested in nature, the asexual reproduction of O. sinensis, and the 
growth of mycelium in culture media.21,22 Currently, the culture 

Fig. 1. Schematic illustration of the formation process of natural and cultivated O. sinensis. The whole process is a complex cycle, including the fungus invading 
the host and the infected larvae moving 2-5 cm below the soil surface. After the larvae gradually harden, the interstitial buds grow from the head of the parasitic 
larva in the spring to form a stalked fruiting body filled with ascospores. Under the right conditions, the ascospores spread and infect other larvae.
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medium temperature is maintained at 16–25°C, and large-scale 
cultivation takes only about 30 days to obtain Cordyceps milita-
ris.23,24 Significant progress has also been made in isolating the 
fungus and rearing the cultured larvae. The isolated spores are in-
jected into the parasitic larvae, enabling large-scale cultivation of 
artificially cultivated Cordyceps sinensis under controlled condi-
tions. The fungi have been identified as O. sinensis and Hepialus 
xiaojinensis Y.Q.25 It is worth noting that the fungus can be isolated 
from various tissues and organs at different developmental stages 
of O. sinensis, such as fruiting bodies, dead caterpillars, living lar-
vae, and ascospores.21 Although natural and cultivated O. sinensis 
are similar in appearance, the composition and content of cultivat-
ed O. sinensis may differ from those of natural O. sinensis due to 
the lack of multiple environmental factors. This discrepancy may 
lead to a preference for natural O. sinensis in terms of medicinal 
value and health functions. Additionally, consumers are concerned 
about whether cultivated and natural O. sinensis have the same 
medicinal effects. Therefore, a comprehensive understanding of 
the pharmacological components and functional similarities and 
differences between natural and cultivated O. sinensis is essential, 
providing a theoretical basis for using cultivated O. sinensis as a 
reliable Chinese medicinal.

Composition of natural and cultivated Ophiocordyceps sinensis
Natural and cultivated O. sinensis have a unique combination of 

metabolites, including polysaccharides, nucleosides, sterols, al-
kaloids, and amino acids. In addition, they also contain a variety 
of minerals, vitamins, and other nutrients (Fig. 2).26 Comparison 
of natural O. sinensis with cultivated O. sinensis showed that the 
metabolite compositions of these two are similar.27 Similarly, the 
Nuclear Magnetic Resonance (NMR) fingerprint of natural O. sin-
ensis is consistent with that of cultivated O. sinensis.27 However, 
there are still some differences in the content of certain ingredients. 
For example, during the cultivation process, carbon sources are 
usually added as nutrients, so the carbohydrate content in natural 
O. sinensis is slightly lower than that in cultivated O. sinensis.28 In 
addition, the nucleoside content in natural O. sinensis is increased 
to cope with the harsh growth environment, as the accumulation 
of nucleosides is essential for enhancing the stress resistance of 
plants during growth.29 Therefore, we summarized the similarities 
and differences in the contents of active compounds in natural and 
cultivated O. sinensis, providing a basis for determining whether 
cultivated O. sinensis can be used as an alternative.

Carbohydrates
The carbohydrates in O. sinensis consist of free saccharides, po-
lymerized saccharides, sugar alcohols, and sugar acids, which are 
important compounds with multiple pharmacological activities.30 
Polysaccharides are a group of essential ingredients with biologi-
cal activities in O. sinensis,13,31 and the content of polysaccharides 
is approximately 3–8% of the total weight.32 Polysaccharides 

Fig. 2. Major component composition and their functions of Chinese caterpillar fungus. 
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might be used as markers for the quality evaluation of O. sinen-
sis. Previous studies have shown that the polysaccharides in O. 
sinensis exhibit antioxidant, anti-cancer, immune-enhancing, and 
liver-protective biological activities.33–36 At the same time, struc-
tural studies show a close relationship between the structure of O. 
sinensis polysaccharides and their pharmacological activities.37 
Currently, polysaccharides with different molecular weights have 
been discovered in O. sinensis. However, due to the structural di-
versity and complexity of polysaccharide molecules, variations in 
monosaccharide composition, molecular weight, and configura-
tion may be key factors affecting their pharmacological activities.

The carbohydrate compounds in natural Cordyceps are mainly 
α-1,4, α-1,3, and α-1,6 linked glucans, with small amounts of ga-
lactose, arabinose, mannose, and galacturonic acid. The structural 
composition of carbohydrate compounds is complex, and different 
monosaccharide compositions, glycosidic bond connection meth-
ods, and the presence of straight chains and branches may result in 
different biological activities.

In recent years, studies have extracted four types of polysac-
charides from both natural O. sinensis and artificially cultivated O. 
sinensis, indicating that the main chain of polysaccharides in natu-
ral O. sinensis is composed mainly of α-1,4, α-1,3, and α-1,6 linked 
glucans, with small amounts of galactose, arabinose, mannose, and 
galacturonic acid.38 In contrast, the polysaccharide structure in cul-
tivated O. sinensis is very complex, mainly composed of glucose, 
galactose, and mannose, with 1,4-glucose and 1,4-galactose as the 
main chains, and the average molecular weight is much lower than 
that of natural cordyceps.39 Studies have shown that mannitol has 
a content more than twice that of natural O. sinensis compared 
to cultivated O. sinensis.40 In addition, studies have demonstrated 
that the content of trehalose is higher in natural O. sinensis, while 
the content of D-arabitol, D-xylitol, D-xylose, gluconic acid, and 
6-phosphogluconic acid is higher in cultivated O. sinensis.15

In general, O. sinensis polysaccharides can be divided into 
two types based on their location: intracellular polysaccharides 
(IPSs) and extracellular polysaccharides (EPSs). IPSs are mainly 
extracted from the fruiting bodies (or worms) and mycelium by 
heating.41 To extract EPS, they are obtained by concentration fol-
lowed by ethanol precipitation.31 Previous research on the poly-
saccharide structure in O. sinensis found that IPSs in O. sinensis 
are usually composed of glucose, mannose, and galactose with 
1-4(6)-glucopyranosyl, 1-6-mannopyranosyl, and 1-4(6)-galacto-
pyranosyl,42 indicating that IPS has a multi-branched chain struc-
ture, consisting of small rings and helical structures, while EPS is 
prone to forming large interaction networks in aqueous solutions.31 
It should be noted that the pharmacological activity of polysac-
charide molecules is related to their molecular weight, chemical 
structure, and conformation. For example, the higher the content 
of high molecular weight IPS, the higher the anti-tumor activity,43 
only polysaccharides with a molecular weight greater than 16,000 
have effective anti-tumor activity.44 Therefore, the relationship 
between the structure of polysaccharides and the pharmacological 
effects of O. sinensis deserves further research. In a recent study, 
Liu et al.45 isolated and purified biological macromolecular gly-
cogen from O. sinensis using the sucrose gradient method for the 
first time and characterized the particle size distribution and chain 
length distribution of glycogen particles, providing a new direction 
for the subsequent exploration of the biological activity of polysac-
charides in O. sinensis.

Nucleosides
Nucleosides are the principal components in O. sinensis, playing a 

key role in regulating various physiological processes in the body 
and exhibiting effective anti-viral, anti-inflammatory, antioxi-
dant activities, as well as neuroprotective functions.46 Currently, 
more than ten nucleosides, nucleobases, and related compounds 
have been isolated and identified from O. sinensis through various 
analytical methods (Fig. 1). Nucleosides are the principal compo-
nents that ensure the authenticity of O. sinensis. Cordycepin and 
adenosine are important nucleosides in O. sinensis.4,47 As early as 
the 1950s, cordycepin was first isolated from Cordyceps milita-
ris, with the structural formula determined as 3′-deoxyadenosine. 
The content of cordycepin in cultivated O. sinensis is higher than 
that in natural O. sinensis.48 Additionally, adenosine is the main 
nucleoside in O. sinensis and has been used as a quality control 
indicator. It is also the main bioactive component in O. sinensis 
and plays multiple roles in regulating inflammation and tissue re-
modeling.44,49–52 Research has confirmed that the adenosine con-
tent in cultivated O. sinensis is much higher than that in natural O. 
sinensis. O. sinensis also contains many other adenosine analogs, 
such as 2′-deoxyadenosine, 2′,3′-dideoxyadenosine, cordycepin 
triphosphate, and 3′-amino-3′-deoxyadenosine. So far, six nucle-
obases have been identified from natural and cultivated O. sinen-
sis, including cytosine, guanine, uracil, thymine, hypoxanthine, 
and adenine.53 Additionally, four nucleotides were isolated by re-
verse-phase liquid chromatography-mass spectrometry, including 
uridine 5′-monophosphate, adenosine 5′-monophosphate, guano-
sine 5′-monophosphate, and cytidine 5′-monophosphate. Among 
these, guanosine and uridine were found to be high in content, and 
there was no significant difference in guanosine content between 
cultivated and natural O. sinensis, as reported in previous stud-
ies.40 O. sinensis also contains many specific nucleotides, such 
as adenosine, 2′,3′-dideoxyadenosine, hydroxyethyl adenosine, 
cordycepin triphosphate, guanidine, and deoxyguanidine. Adeno-
sine and cordycepin (3′-deoxyadenosine), have several differ-
ent deoxyguanosine structures.46 Non-targeted UPLC-MS-based 
metabolomics identified that the contents of 11 nucleotides were 
higher in natural O. sinensis, about 2.22–104.36 times that of cul-
tivated samples.15 Currently, the identification and detection of nu-
cleoside components in O. sinensis is a hot research topic, aiming 
to develop a fast, sensitive, and selective method for the quality 
evaluation of O. sinensis.

Proteins and nitrogenous compounds
Amino acids play an important role in maintaining internal balance 
and are key precursors for synthesizing plant hormones, as well as 
acting as amino group donors to form nitrogen-containing com-
pounds.54 It has been proven that O. sinensis contains all essential 
amino acids and some non-essential amino acids (including pyro-
glutamic acid, glutamic acid, histidine, arginine, and tyrosine), as 
well as abundant and vital peptides, proteins, and polyamines.3,40 
In a comparative analysis, Wang and his colleagues examined the 
amino acid composition of cultivated and natural O. sinensis.39 
The results demonstrated a marked increase in the total amino acid 
content in cultivated samples. Specifically, compared to cultivated 
O. sinensis, natural O. sinensis contains higher levels of glutamic 
acid, arginine, pyroglutamic acid, valine, histidine, phenylala-
nine, and tyrosine, while the content of leucine and aspartic acid 
is lower.40,55,56 Glutamic acid was the most dominant amino acid 
across all samples. However, arginine was the second most preva-
lent amino acid in natural samples, while cultivated samples had 
a higher concentration of aspartic acid and leucine.40 Additionally, 
O. sinensis contains several rare cyclic dipeptides, including cy-
clo-[Gly-Pro], cyclo-[Leu-Pro], cyclo-[Val-Pro], cyclo-[Ala-Leu], 
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and cyclo-[Thr-Leu]. Significant quantities of polyamines, such as 
1,3-diamino propane, cadaverine, spermidine, spermine, and pu-
trescine, were also detected. Other nitrogenous compounds, like 
putrescine, were also identified.

Sterol
Furthermore, the steroids in O. sinensis have critical physi-
ological functions. They exist in two forms: free ergosterol and 
esterified ergosterol. Various sterols have been isolated from O. 
sinensis, including ergosterol and four ergosterol derivatives 
(ergosteryl-3-O-β-D-glucopyranoside, 22,23-dihydroergosteryl-3-
O-β-D-glucopyranoside, 5α, 8α-epidioxy-24(R)-methylcholesta-
6,22-dien-3β-D-glucopyranoside, 5α, 6α-epoxy-24(R)-methylcho 
lesta-7,22-dien-3β-ol).57 Studies have shown that the ergosterol 
content in different natural O. sinensis samples varies and is higher 
than that in cultivated O. sinensis.11 Different sterol compounds 
are involved in various physiological processes. Among the four 
ergosterol derivatives, a large number of experiments have con-
firmed that the latter two have anticancer activity, while the first 
two do not.58 Studies have determined the sterols in O. sinensis 
fruiting bodies (CsA) and parasitic caterpillars (CsB) separately 
and found that CsA and CsB have similar ergosterol compositions, 
but the content of ergosterol in CsA is much higher than that in 
CsB, indicating that CsA and CsB may be in different growth stag-
es or have different physiological functions related to ergosterol 
growth and reproduction.59

For example, anti-tumor compounds and ergosterol derivatives 
can induce apoptosis in human liver cancer HepG2 cells,60 while 
ergosterol compounds have significant cytotoxic activity.58,61

Alkaloids
Alkaloids can improve blood circulation and regulate endocrine 
functions.62 1H-NMR identification of O. sinensis metabolites re-
vealed that the betaine content in cultivated O. sinensis is rela-
tively high. Two new pyrrole alkaloid derivatives, 2-carboxalde-
hyde-1-(4-aminobutyl)-5-(methoxymethyl)-1H-pyrrole (14) and 
2-carboxaldehyde-5-(methoxymethyl)-1-(2-oxo-3-piperidinyl)-
1H-pyrrole (15), were isolated from O. sinensis, and the anti-
inflammatory results showed no significant inhibitory activity.55 
Recently, in the study of the chemical components of O. sinensis, a 
thiazole alkaloid was isolated and identified, which has glucosidase 
inhibitory activity and is a potential anti-diabetes compound.63

Other components
In addition, three different lipid metabolites, namely linolenic 
acid, linoleic acid, and oleic acid, were isolated from O. sinen-
sis.55 Among them, linolenic acid was only detected in natural O. 
sinensis. O. sinensis is rich in minerals, with five macro-elements 
and eighteen trace minerals detected (Table 1).15,40,48,53,55,57,64–66 
The contents of K and P among the five macro-elements are sig-
nificantly higher in cultivated O. sinensis. The Se, Zn, Cu, and Co 
contents in natural O. sinensis are higher than those in cultivated 
samples, while the Ni content is three to five times higher than that 
in natural O. sinensis samples. Interestingly, as natural O. sinensis 
grows at higher altitudes, the content of toxic elements Ni, Pb, 
Hg, and As decreases.40 At the same time, O. sinensis is also rich 
in vitamins B1 and B2, which help promote blood circulation and 
primary metabolism in the human body. Taken together, the rich 
active ingredients in O. sinensis determine its important pharma-
cological activity. Therefore, more in-depth research is needed on 
the biological components and content of O. sinensis to cultivate 
more effective alternatives to it.

Medicinal functions of Ophiocordyceps sinensis
Current research has confirmed the pharmacological effects of O. 
sinensis in anti-diabetes, antioxidants, anti-inflammatory, immu-
nomodulatory, liver protection, and anti-atherosclerosis (Fig. 2).65 
Diabetes is a metabolic disease characterized by hyperglycemia, and 
persistent hyperglycemia has become an increasingly serious public 
health problem. Previous studies have found that a variety of tradi-
tional Chinese medicines have been used to lower blood glucose, 
such as berberine, astragalus, Panax notoginseng, and Pueraria lo-
bata.67–70 At the same time, polysaccharides extracted from O. sin-
ensis have been shown to alleviate diabetic metabolic disorders by 
regulating glucose metabolism and modulating intestinal flora and 
metabolites.71 The mycelium of O. sinensis and the polysaccharide 
components in the extract exhibit strong antioxidant activity. For 
example, previous studies have reported that water-soluble poly-
saccharides isolated from O. sinensis demonstrate effective in vitro 
antioxidant activity, including scavenging hydroxyl and superoxide 
radicals and inhibiting hemolysis caused by hydrogen peroxide.72 
Studies have shown that the monosaccharide composition of poly-
saccharides can significantly influence their antioxidant activity. 
It has been reported that a higher glucose content in the monosac-
charide composition correlates with stronger antioxidant activity.73 
Moreover, acidic polysaccharides mainly composed of glucose 
(88.4%) not only exhibit free radical scavenging effects in vitro but 
also enhance antioxidant enzyme activity in type 2 diabetic mice.74

Xu et al.75 first described the enhancement of natural killer cell 
activity in vivo and in vitro by the ethanol extract of O. sinensis, 
as well as the reduction of melanoma formation in the lungs of 
mice, suggesting the immune-enhancing effect of O. sinensis on 
immune-deficient organisms. Currently, several compounds with 
immunomodulatory activity have been isolated from O. sinensis, 
among which polysaccharides are the main component. O. sinensis 
polysaccharides induces T lymphocyte proliferation and secretion 
of IL-β and IL-6. In addition, they can enhance the phagocytosis 
of macrophages, demonstrating their important role in immune 
response, and can be used as a natural immune regulator.76 Bi et 
al.77 reported that low molecular weight polysaccharides obtained 
from cultivated O. sinensis fruiting bodies exerted immunostimu-
latory effects. Inflammation is a protective mechanism that de-
fends against tissue damage caused by various stimuli and harmful 
factors, such as ultraviolet radiation, infection, and cell damage. 
Studies have shown that O. sinensis polysaccharides enhance the 
immunity of mice exposed to ionizing radiation by reducing oxida-
tive damage and regulating the secretion of cytokines (IL-4, IL-5, 
and IL-17).78 Recent studies have shown that O. sinensis polysac-
charides can alleviate acute liver injury by upregulating vascular 
endothelial growth factor, stromal cell-derived factor-1α, prolif-
erating cell nuclear antigen, and downregulating IL-12 and cas-
pase-1 to promote hepatocyte proliferation and liver tissue repair.79 
Notably, O. sinensis polysaccharides can increase the abundance 
of Akkermansia and Lachnospiraceae, reduce the abundance of 
Bacteroides, Parabacteroides, and Blautiae, improve intestinal 
barrier function, and inhibit intestinal inflammation.80 In addition, 
many studies have demonstrated the potential of cordycepin from 
Cordyceps militaris in anti-inflammatory treatment. For example, 
cordycepin effectively alleviates lipopolysaccharide induced acute 
lung injury by inhibiting inflammation and oxidative stress.81 
Cordycepin significantly decreased the expression of cyclooxyge-
nase-2 and inducible nitric oxide synthase in RAW 264.7 cells.82

Compounds in O. sinensis, including polysaccharides, sterols, 
and adenosine, have been shown to inhibit tumor cell growth and 
metastasis by inducing tumor cell apoptosis, cell cycle arrest, and 
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Table 1.  Comparison of the bioactive compound composition of natural and cultivated O. sinensis

Chemical name Chemical formula Classification Change direction Reference

6-phosphogluconic acid C6H13O10P Carbohydrates ↓ 15

D-arabitol C5H12O5 ↓ 15

D-xylitol C5H12O5 ↓ 15

D-xylose C5H10O5 ↓ 15

Gluconic acid C6H12O7 ↓ 15

Mannitol C6H14O6 ↑ 40

Trehalose C12H22O11 ↑ 64

2′-deoxyadenosine C9H15N3O5 Nucleoside ↑ 15

2′,3′-dideoxyadenosine C10H13N5O2 – 53

3′-amino-3′- deoxyadenosine C10H14N6O3 – 53

Adenosine C10H13N5O4 ↑ 65

Adenine C5H5N5 ↑ 15

Cordycepic acid C6H14O6 ↓ 40

Cordycepin C10H13N5O3 ↓ 48

Cordycepin triphosphate C10H16N5O12P3 – 53

Cytidine C9H13N3O5 – 53

Cytosine C4H5N3O – 53

Guanosine C10H13N5O5 NS 40

Guanine C5H5N5O ↑ 15

Hypoxanthine C5H4N4O ↑ 15

Thymine C5H6N2O2 ↑ 15

Xanthine C5H4N4O2 ↑ 15

Uracil C4H4N2O2 ↑ 15

Uridine C9H12N2O6 ↑ 15

Alanine C3H7NO2 Amino acids ↓ 40

Arginine C6H14N4O2 ↑ 40

Aspartic acid C4H7NO4 ↓ 40

Cysteine C3H7NO2S NS 40

Glycine C2H5NO2 ↓ 66

Glutamic acid C5H9NO4 ↑ 40

Histidine C6H9N3O2 ↑ 40

Isoleucine C6H13NO2 ↓ 40

Leucine C6H13NO2 ↓ 40

Lysine C6H14N2O2 ↓ 66

Methionine C5H11NO2S ↓ 40

Phenylalanine C9H11NO2 ↑ 40

Proline C5H9NO2 ↓ 40

Pyroglutamic acid C5H7NO3 ↑ 55

Serine C3H7NO3 NS 40

Threonine C4H9NO3 NS 40

(continued)
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inhibiting angiogenesis.83 Previous studies have found that O. sin-
ensis polysaccharides have a strong regulatory effect on mouse 
liver cancer.84 Ergosterol can reduce the proliferation of various tu-
mor cells, and cordycepin inhibits the proliferation of cancer cells 

by triggering the Wnt signaling pathway. For example, in human 
colon cancer cells, it induces apoptosis by increasing pro-apoptotic 
molecules.85 Additionally, it could enhance exercise and improve 
memory and learning ability, as supported by various clinical stud-

Chemical name Chemical formula Classification Change direction Reference

Tryptophan C11H12N2O2 – 40

Tyrosine C9H11NO3 ↑ 40

Valine C5H11NO2 ↑ 40

Ergosterol C28H44O Sterol ↑ 57

Ergosteryl-3-O-β-D-glucopyranoside C34H54O6 – 57

22,23-dihydroergosteryl-3-O- β- D-glucopyranoside C34H54O8 – 57

5α, 8α- Epidioxy-24 (R) - methylcholesta-6,22 
dien-3β- D-glucopyranoside

C28H44O3 – 57

5α, 6α- Epoxy 24 (R) - methylcholesta-7,22 dien-3β-ol C28H44O2 – 57

Betaine C5HNO2 Alkaloids ↓ 64

Linoleic acid C18H32O2 Other components 
(fatty acid)

– 55

Linolenic acid C18H30O2 ↑ 55

Oleic acid C18H34O2 – 55

Aluminum Al Other components 
(mineral)

↑ 40

Arsenic As ↑ 40

Barium Ba ↑ 40

Cadmium Cd NS 40

Calcium Ca ↑ 40

Chromium Cr NS 40

Cobalt Co ↑ 40

Copper Cu ↑ 40

Hydrargyrum Hg NS 40

Iron Fe ↑ 40

Lead Pb ↑ 40

Magnesium Mg ↑ 40

Manganese Mn ↑ 40

Molybdenum Mo NS 40

Niccolum Ni ↓ 40

Phosphorusb P ↓ 40

Potassium K ↓ 40

Selenium Se ↑ 40

Sodium Na ↑ 40

Stannum Sn ↑ 40

Strontium Sr ↓ 40

Vanadium V NS 40

Zinc Zn ↑ 40

Arrows represent changes in the content of a certain component in natural O. sinensis compared to cultivated O. sinensis. “NS” represents no significant difference in content 
between the two, while “–” represents that the comparison of the compound content between the two is not yet clear.

Table 1.  (continued)
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ies.86 It has also shown reliable results in improving organ mal-
functioning by regulating cytokines, chemokines, and oxidative 
stress-induced protein changes.

An increasing number of studies have concentrated on the 
pharmacological activities of cultivated O. sinensis, including an-
tioxidant, anti-inflammatory, anticancer, immunomodulatory, hy-
poglycemic, and the ability to delay the progression of kidney dis-
ease.87–89 Dong et al.90 evaluated the in vitro antioxidant activity 
of aqueous extracts of natural and cultivated O. sinensis mycelium 
and confirmed that both had effective antioxidant activity. Wang 
et al.91 compared the protective effects of natural and cultivated 
O. sinensis against hepatotoxicity. The results showed that both 
play a liver-protective role by preventing liver cells from oxidative 
damage. Therefore, the pharmacological functions of natural and 
cultivated O. sinensis are similar, and there is no significant differ-
ence in pharmacological activity.

Despite these advances, there remains a need for further re-
search to comprehensively understand the molecular mecha-
nisms underlying these effects and to explore the full spectrum of 
pharmacological activities. Similarly, new drug delivery systems 
should be developed to enhance the effects of O. sinensis active 
ingredients, compensating for the limitations of traditional drug 
delivery methods and better elucidating the bioactive compounds 
of O. sinensis and their therapeutic potential.

Conclusions
The chemical composition and bioactive compounds of O. sinensis 
have been increasingly elucidated, with key components such as 
cordycepin, adenosine, polysaccharides, and sterols recognized for 
their pharmacological properties. These compounds have demon-
strated a range of health benefits, including immunomodulatory, 
anti-inflammatory, antioxidant, and antitumor activities. Beyond 
the traditional harvesting of wild O. sinensis from their native, 
harsh environments, significant advancements have been made in 
the large-scale artificial cultivation of O. sinensis. This method is 
particularly advantageous as it allows for more sustainable pro-
duction while mitigating the environmental impact associated with 
wild harvesting. However, the market is currently flooded with nu-
merous low-quality substitutes, which may not only fail to deliver 
the therapeutic benefits associated with genuine O. sinensis but 
may also pose safety risks. To ensure clarity, precision, and a deep-
er understanding of the medicinal potential of O. sinensis, a mul-
tifaceted approach to its production and quality control is impera-
tive. Thus, it is essential to establish rigorous identification and 
standardization protocols. These should include a detailed analysis 
of morphological characteristics and comprehensive profiling of 
active ingredients to distinguish between natural O. sinensis, its 
fermented counterparts, and inferior substitutes. Current research 
is mainly through comparative analysis of natural and cultivated O. 
sinensis metabolites. It is generally believed that the components 
and pharmacological activities of the two are similar, but there are 
differences in the content of some specific components. Accurate 
identification and quality control are crucial to ensuring that the 
therapeutic potential of O. sinensis is fully harnessed. Therefore, a 
more profound and systematic understanding of the health benefits 
and therapeutic potential of O. sinensis will significantly contrib-
ute to its future medicinal applications. Such knowledge will not 
only enhance its utilization in traditional medicine but also pave 
the way for its integration into modern therapeutic practices, po-
tentially leading to the development of novel drugs and health sup-
plements derived from this precious fungus.
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